Analysis: Half the global population saw all-time record temperatures over past decade

Carbon Brief reveals visually just how much the world’s most populous regions have been affected by extreme heat since 2013

By Dr Zeke Hausfather

Design by Tom Prater

More frequent and intense extreme heat is one of the major impacts of climate change.

As the Intergovernmental Panel on Climate Change’s (IPCC) sixth assessment confirmed, it is “virtually certain” that “there has been increases in the intensity and duration of heatwaves and in the number of heatwave days at the global scale from 1950”.

Extreme heat events can have serious health impacts – Europe’s 2003 summer heatwave, for example, caused more than 70,000 deaths. Extreme heat can also worsen air quality problems and ground-level ozone, exacerbate drought and wildfire risk, reduce labour productivity, damage infrastructure and reduce crop yields.

There are many ways to measure extreme heat. Absolute temperature is one, but a key factor for the impacts of heat extremes is also how much higher temperatures are compared to normal for a specific location.

To assess how the incidence of extreme heat has changed over time, Carbon Brief has examined which regions experienced all-time daily heat records in each year since 1950.

The analysis shows that the number of people experiencing all-time high heat events has increased dramatically over the past three decades. Overall, about half the world’s population is living in regions that saw their hottest daily temperatures since 1950 during the past 10 years.

In 2022 alone – which was the fifth or sixth warmest year on record for the Earth’s surface as a whole across different datasets – approximately 380 million people saw their hottest single hourly temperature ever recorded.

Record heat over the past decade

In the map below, the red shading indicates areas that saw their warmest daily temperatures since 1950 in 2022.

As you scroll, you will see the areas experiencing their warmest temperatures on record over the past two years (that is, 2021 and 2022) and all the way back to the past 10 years (2013-2022). Over the past decade, approximately 40% of the Earth’s surface experienced its warmest temperatures on record.

Areas experiencing record heat last year

Areas experiencing record heat last year

Pie chart showing percetage of world's surface experiencing record heat in the past 10 years.
Map of world showing areas of record temperatures over past decade.
Last year, record high temperatures were set across 4% of the world’s surface. Much of the UK, Ireland and China experienced record-breaking temperatures.
Going back two years, the proportion of the world's surface to experience record heat doubles to 8%, including large swathes of western Canada and Greenland.
Many areas across the Arctic circle saw new record max temperatures in 2020.
Much of western Europe has experienced record heat in the past four years.
In the past five years, large areas around New Zealand and many Pacific islands have seen new record high temperatures.
Over a quarter of the world's surface has experienced record high temperatures in the past six years.
Many parts of Africa have experienced record heat since 2016.
Much of the North Pacific has seen record maximum temperatures in the past eight years. The year 2015 saw the greatest number of areas experiencing record temperatures in the past decade, with nearly 6% of the world's surface being impacted.
Antarctica has also seen many areas where record temperatures have occurred.
The past decade has seen nearly 40% of the world's surface experience record heat.

When scientists talk about record temperatures it can mean a number of different things. Often scientists focus on the hottest month or year on record for the Earth as a whole. This generally refers to the largest increase in temperatures relative to the historical average – known as the temperature “anomaly”.

An alternative metric to look at the changing climate is how the hottest temperature recorded over the course of the year has changed over time. This only provides part of the story – there are real impacts of warming in other parts of the year – but is important in assessing extreme heat stress.

In this analysis, Carbon Brief uses ERA5 – a state-of-the-art reanalysis product from the European Centre for Medium-Range Weather Forecasts (ECMWF) – to look at how the hottest maximum daily temperature of the year has changed over time for every part of the planet.

In essence, a reanalysis product is a weather model run backwards in time. To produce daily weather forecasts, groups such as ECMWF take into account massive amounts of data from satellites, aircraft, radar, weather balloons, weather stations and automated buoys. A reanalysis record creates these “weather forecasts” for each day backwards in time and can track changes in different data input sources to detect and correct for changes in the way that measurements are made over time.

The figure below shows the global average surface temperature from ERA5 for each day between 1950 and the end of 2022. While there is a lot of day-to-day variation in global temperatures – and even more in any individual part of the planet – the long-term warming trend is quite clear in the daily temperature data, with current temperatures around 1C warmer on average than those of the 1950s.

Global average daily surface temperatures between 1950 and the end of 2022, from Copernicus/ECMWF’s ERA5.
Global average daily surface temperatures between 1950 and the end of 2022, from Copernicus/ECMWF’s ERA5. Anomalies plotted with respect to a 1951-1980 baseline. Chart by Carbon Brief.

Increasing portion of the global population experiencing record heat

While the world as a whole has warmed rapidly and experienced an increasing amount of record heat, people do not live in that global average.

In order to assess the number of people experiencing record heat, Carbon Brief combined the ERA5 all-time hottest temperature data with global population estimates from NASA and Columbia University.

As global population has increased over time, more people would be experiencing record heat events even if the climate were not changing – simply due to the fact that there are more people. To isolate the effect of climate change on the number of all-time record heat events the population is experiencing, the analysis holds the global population constant at 2020 levels and looks back in time at how many all-time record heat events would have been experienced if population remained unchanged.

The figure below shows the number of people who would have experienced all-time record heat events in each year if the global population remained fixed at 2020 levels.

If the climate were not warming, there would still be some year-to-year natural variability in the number of record heat events experienced, but the line would remain relatively flat. However, the world is warming and, thus, the portion of the population that has experienced all-time record heat has increased dramatically.

Number of people experiencing record temperatures in the past decade. Chart by Carbon Brief.
Number of people worldwide who would have experienced all-time record heat (between 1950 and 2022) by year, assuming fixed 2020 population levels. Chart by Carbon Brief.

At the 2020 level of global population, approximately 6.3 billion people live in areas that have seen all-time record heat over the past 30 years – and 3.5 billion people have experienced all-time record heat in the past decade alone.

During the past decade, a number of regions stand out as experiencing particularly widespread extreme heat events. The maps below overlay global population density data on top of areas experiencing record heat over the past decade, and zoom in on regions including Europe, China and the Caribbean to show large cities that set new all-time records in recent years.

Population density
People per km²
8,000 ›
‹ 5
Source: SEDAC
Map of world showing global population
This map shows population density across the world. The dark blue indicates areas where more than 8,000 people live per square kilometre, while the pale yellow shows where there are very few people.
Some of the most populated cities Icon of population total around the world are not the most densely populated
, due to a number of factors including area size and concentration of the city’s residents.

Cities such as Jakarta, Indonesia and Shanghai, China have some of the largest metropolitan populations in the world.

Meanwhile, cities such as Paris, France and Manila, Philippines are densely populated in the urban areas and have a high average number of people per km².
By showing only record heat over land during the past 10 years, it shows more clearly where people have experienced unprecedented temperatures, such as in Paris, France, Lagos, Nigeria and Shanghai, China.
While being one of the most populous countries in the world, India experienced relatively few areas of record heat in the past 10 years.
Meanwhile, large parts of Australia felt record heat, but mostly in sparsely populated regions.
Now to focus on some of the regions in more detail...

1. Western Europe

A heatwave pushes temperatures to 36C in Turin, Italy, 24 July 2019.
A heatwave pushes temperatures to 36C in Turin, Italy, 24 July 2019. Credit: Nicolò Campo / Alamy Stock Photo.
Here is a selection of major cities in western Europe that have experienced record heat.

Areas of red on the map are where a new maxiumum temperature has been set in the past 10 years.

The spikes indicate population density – the taller the spike, the more people live in that area.
Many parts of the UK saw new maximum temperatures last year, as a heatwave during 18-19 July pushed temperatures above 40C.

Clocking in with a population of more than six million people, Madrid, Spain experienced a record temperature of 40.7C for the third time in four years.

Meanwhile, much of Europe had already seen records broken in 2019, including Paris, France, where temperatures rose to 42.6C on 25 July.

2. Nigeria

Aerial view of housing in Lagos, Nigeria.
Aerial view of housing in Lagos, Nigeria. Credit: Mauritius Images GmbH / Alamy Stock Photo.

Many regions along the coast of west Africa – a densely populated part of the continent – have seen record-breaking temperatures over the past decade.

Lagos, Nigeria, is home to nearly 16 million people. Last year, parts of the city experienced record temperatures of 38C.

Meanwhile further along the coast in Port Harcourt, Nigeria, where more than 2 million people live, temperatures reached 38.5C in 2020.

Elsewhere along the coast, maximum temperatures have been broken in countries including Togo, and Guinea Bissau.

3. Caribbean

A mechanic is shaded whilst working on a broken-down car in Havana, Cuba.
A mechanic is shaded whilst working on a broken-down car in Havana, Cuba. Credit: Rupert Sagar-Musgrave / Alamy Stock Photo.

Several Caribbean islands have seen record temperatures this past decade, including Jamaica, Dominica, Dominican Republic and Cuba.

In Kingston, Jamaica, temperatures rose to 39.1C during a hot-spell in June 2019. This marked a 3.1C rise on the previous record-high temperature the previous year.

Elsewhere, records have been repeatedly broken over the past decade, such as in Cuba, where many cities have set new maximum temperatures. Havana reportedly set a new record in 2020, reaching 38.5C, having broken the local record at least six times since the turn of the century.

4. China

People move about in Shanghai, China, as a red alert is declared due to high temperatures on 23 July 2022.
People move about in Shanghai, China, as a red alert is declared due to high temperatures on 23 July 2022. Credit: Reuters / Alamy Stock Photo.

China saw extreme heat last summer, with temperatures exceeding 40C in several cities, including Shanghai and Chengdu, leading to officials issuing multiple rare “red alerts”.

On the map, there are many tall red spikes, as millions of people experienced record-breaking heat over the past 10 years.

5. North America

Destroyed cars and buildings from extreme temperatures and wildfires in Lytton, Canada, July 2021.
Destroyed cars and buildings from extreme temperatures and wildfires in Lytton, Canada, July 2021. Credit: Associated Press / Alamy Stock Photo.

In late June 2021, a heatwave spanning north-western US and Canada occurred, breaking local record temperatures by over 5C in some areas. The event was “virtually impossible” without human-caused global warming, according to a “rapid-attribution” study.

The small village of Lytton, in British Colombia, Canada, made headlines as temperatures there set a new national record, peaking at 49.6C. The village was largely destroyed by wildfires in the days that followed.

All-time temperature records were broken in US cities, including Portland – on three consecutive days, reaching 46.7C – as well as in Seattle (reaching 42.2C). These records were 5.0C and 2.8C higher than the previous records, respectively.

6. Kuwait

View of Kuwait City at sunset.
View of Kuwait City at sunset. Credit: Alexey Vronsky / Alamy Stock Photo.

Many parts of the Middle East have seen record temperatures set over the past decade. In Kuwait City, where over 3 million people live, temperatures were reported to have reached 53.2C in June 2021. This is one of the hottest temperatures ever recorded to hit a densely populated area.

Mitribah, a weather station in the north west of Kuwait, recorded a temperature of 53.9C in July 2016, making it the joint-hottest temperature to be recorded in Asia.

These extreme heat events have large negative impacts for both human and natural systems. They can cause heat stress that contributes to premature death, particularly in vulnerable populations. They can worsen local air quality, hurt crop yields, reduce soil moisture and exacerbate droughts, and increase the risk of the catastrophic wildfires that have been seen in the western US, Europe and Australia in recent years. Extreme heat can also reduce labour productivity and damage infrastructure by buckling roads, bridges and rail lines.

Extreme heat events and all-time hottest daily temperature records will both become more common as the world continues to warm. The only way to slow this down is for the world to cut global emissions of CO2 and other greenhouse gases down to net-zero.


To produce the analysis in this article, Carbon Brief used KNMI Climate Explorer to analyse ERA5 daily reanalysis data which is available via the website on a grid with a resolution of 0.5 degrees latitude by 0.5 degrees longitude (e.g. ~50 km by ~50 km near the equator). The analysis examined the daily maximum temperature (Tmax), which is based on the hottest hour of the day, and used absolute temperatures rather than anomalies.

Next, Carbon Brief took the hottest Tmax value for the year for each grid cell and determined which year in the dataset the hottest Tmax value occurred. The ERA5 reanalysis dataset extends back to 1950 in the version of the dataset used. Unlike monthly anomalies, it is not currently possible to get accurate high-resolution daily absolute temperature values between the mid-1800s and early-1900s given data limitations, though some reanalysis products are working to extend their records further back in time. The percent of the globe setting all-time maximum temperature records in each year is based on a weighted average of grid cells setting records, with the grid cell weights based on their area.

Finally, the analysis uses gridded global population estimates from NASA and Columbia University, provided at a resolution of 30 arc-second (e.g. ~1km by ~1km near the equator) and combined it with the temperature data to determine what portion of the global population experienced their hottest temperature on record in each year.